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Measuring the elastic properties of high-modulus 
fibres 

P. J. HINE, I. M. WARD 
IRC in Polymer Science and Technology, University of Leeds, Leeds LS2 9J7-, UK 

The measurement of the elastic constants of several highly oriented thermoplastic polymer 
fibres is described. The method makes use of the hot-compaction process, developed and 
patented in this laboratory, which enables a solid section of highly oriented polymer to be 
produced from an aggregate of highly oriented fibres. As only a small fraction of the original 
fibre is melted and recrystallized during the process, the compacted materials offer a unique 
opportunity for measuring fibre properties in the bulk. An ultrasonic immersion technique is 
used to measure the elastic properties of the compacted materials, from which the 
properties of the polymer fibres are inferred. The experimentally determined fibre elastic 
properties have been compared with other oriented polymer materials to assess any 
similarities in elastic anisotropy between different methods for producing fibre orientation, 
and compared with theoretical upper limits for the fibre elastic properties based on 
theoretical estimates for the polymer crystal unit cell appropriately averaged for hexagonal 
symmetry using the aggregate model. 

1. Introduct ion 
A complete description of the elastic properties of 
a drawn high-modulus polymer fibre is seldom avail- 
able, for although it is relatively simple to measure the 
longitudinal and torsional moduli, it is extremely 
difficult to measure the transverse modulus and 
Poisson's ratios of a fibre that is sometimes only 
tens of micrometres in diameter. Methods do exist 
for measuring transverse properties of fibres, for in- 
stance the transverse compression test, and a number 
of authors have used this method to determine the 
transverse properties of, for instance, polyethylene 
fibres. Even when this measurement is possible, there 
is still a considerable advantage in having a method 
which measures a full set of elastic constants for a 
fibre under the same conditions of temperature and 
frequency. 

The uses for a full set of elastic constants for an 
oriented polymer fibre are numerous. It enables 
a fuller understanding of the role of the polymer 
microstructure on the elastic properties of the fibre to 
be investigated, through the use of theoretical simula- 
tions. It allows similarities in elastic anisotropy with 
other oriented polymer systems to be explored, includ- 
ing large-scale oriented products such as die-drawn 
and extruded materials and fibre-reinforced com- 
posites. Finally, a full description of the elastic proper- 
ties of a fibre provides a vital starting point for model- 
ling work on fibre-reinforced composite materials. 
While outside the scope of this current paper, this is an 
area of study which has so far shown considerable 
predictive success through our work on glass, carbon 
and polyethylene fibre-reinforced epoxy composites 
[I~43. 

A method is described here for determining a full set 
of elastic constants for a number of thermoplastic 
polymer fibres, utilizing the technique of hot compac- 
tion. In this process, developed in this laboratory and 
patented by The British Technology Group (GB Pat- 
ent 2253420), fibres are compacted together under 
suitable conditions of temperature and pressure to 
form a homogeneous material in which a major frac- 
tion of the original fibre is retained [5-9]. The advant- 
age of the compaction technique is that it provides 
a sample of substantial size on which a set of consis- 
tent measurements can easily be made, while giving 
a high retention of the properties of the original fibre: 
this makes it ideal for estimating the properties of the 
original fibre. 

The measurement of the elastic properties of five 
different fibre types (melt-spun polyethylene, gel-spun 
polyethylene, polypropylene, polyethylene tereph- 
thalate and a thermotropic liquid crystalline polymer) 
is reported. The technique used for measuring the fibre 
elastic constants was the ultrasonic immersion method, 
originally implemented by Read and Dean at NPL 
[10] and further developed by Lord [-11, 12] and Woolf 
[13]. This technique gives a full set of elastic constants, 
all determined at the same frequency and temperature. 
Once determined, the fibre elastic constants were used 
for a number of interesting calculations and compari- 
sons, some of which we allude to above. 

2. Experimental procedure 
2.1. Hot compaction 
The basis of this work is the hot compaction process, 
where high modulus, small diameter, polymer fibres 
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are compacted to form thick section homogeneous 
products [5-9]. The details of five fibres used in this 
study are shown in Table I. The compaction process 
for the five fibres was basically the same. Firstly the 
fibres were wound around a C-shaped former, of sep- 
aration 65 mm, and placed into a matched metal 
mould of area 55 mm x 55 mm: enough fibre was 
wound around the former to ensure a final product of 
approximately 3 mm thickness. The mould was then 
placed into a hot press, which was set to the compac- 
tion temperature for the particular fibre (as shown in 
Table I). A light pressure of 100p.s.i. (103 p.s.i. 
= 6 .89Nmm-Z)  was then applied while the 

fibre/mould assembly heated up. Once the mould 
reached the compaction temperature it was left for 
a further 10 min and then a high pressure of 3000 p.s.i. 
was applied for 10 s. The mould was then cooled and 
the sample removed. Slight variations in the process 
were required for each individual fibre while following 
the above basic formula. For  instance, the gel-spun 
polyethylene fibres required a higher pressure during 
the initial phase of the process (160 p.s.i.) because of 
a higher shrinkage stress developed by the fibres close 
to their melting range. 

In the majority of the fibres, the compaction process 
works by "selectively melting" a small proportion of 
the fibres' surface during the original low-pressure 
phase. Application of the high pressure consolidates 
the product, removing air and any excess molten ma- 
terial. On cooling, the molten portion reforms (in 
some cases recrystallizes) to bind the structure to- 
gether. Only the gel-spun polyethylene fibre failed to 
show any significant surface melting [14]. However, 
the compaction process on this fibre does produce 
a reasonable level of fibre-to-fibre adhesion which 
results in a homogeneous product on which measure- 
ments can be made. 

It will be appreciated that a range of compaction 
temperatures are possible for each fibre, trading off the 
fibre properties, which fall with the amount of fibre 
melted, with transverse strength, which rises with the 
amount of fibre melted. In this work, where transverse 
strength is of less importance, we have chosen com- 
paction temperatures that are the lowest that give 
perfect compaction, allowing maximum retention of 
fibre properties which can then be measured. For  
a close-packed hexagonal arrangement of circular 
fibres, only 9% of the melted and recrystallized phase 
is needed to fill all the gaps in the structure, and this is 
the proportion aimed at with the samples made for 
this work, using the temperatures shown in Table I. 

A typical transverse section, in this case through 
a compacted melt-spun polyethylene sample, is shown 
in Fig. 1, etched to give contrast between the different 
morphologies: this picture was taken by Professor 
Bassett and his colleagues at the University of Read- 
ing. The spaces in between the closed-packed fibres 
are seen to be filled with melted and reformed mater- 
ial. The holes seen within each fibre are due to internal 
defects which preferentially etch out. While the mech- 
anism of compaction may differ between the five fibre 
types, the essential point is that the compacted mater- 
ial contains a consolidated aligned assembly of the 
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TABLE I Details of the fibres and the compaction temperatures 

Fibre type Company Grade Compaction 
temperature 
(oc) 

Melt-spun SNIA fibre Tenfor 138 
polyethylene 
Gel-spun DSM Dyneema 145 
polyethylene 
Polyethylene ICI Tyre cord 256 
terephthalate Yarn 

(38035 T800) 
Polypropylene F. Drake and Co. Leonene 164 
Thermotropic Hoechst Celanese Vectran 280 
liquid crystal 
polymer 

Figure 1 A transverse section from a compacted melt-spun poly- 
ethylene fibre sample. 

respective fibres, with a substantial percentage of the 
original fibre remaining. Fuller details of the compac- 
tion process, typical mechanical properties, and de- 
tails of internal morphology can be found elsewhere 
for the melt-spun polyethylene [5-8] and for poly- 
ethylene terephthalate [9]. Details of the compacted 
gel-spun polyethylene [ 14] and the polypropylene will 
appear shortly. 

2.2. Measurement of elastic properties 
The elastic properties of the compacted materials were 
determined using the ultrasonic velocity method 
[-10 13]. The sample to be measured is placed in 
a water bath (at 25 °C) between two ultrasonic trans- 
ducers (2.25 MHz), one acting as a transmitter and 
one acting as a receiver. The basic measurement is the 
time of flight for a sound pulse to travel between the 
transducers. When the sample is at right angles to the 
beam, only a tensile wave is propagated through the 
sample. However, as the sample is rotated away from 
the normal, a shear wave is generated at the front 
surface of the sample. 

Two equations exist which relate the shape of the 
velocity of the tensile, Vt, and shear waves, Vs, with 
angle of refraction, r, to the elastic properties of the 
sample in the plane of propagation of the wave. Defin- 
ing the three major axes of the samples to be 1, 2 and 3, 



if the wave is propagating in the 23 plane then these 
equations are given as 

B22 q- B33 4- [(B22 - B33 ) q- 4B2311/2 
Vt = (1) 

2p 

for tensile waves, and 

B22 Jr- B33 -- E(B22 - B33 ) q- 4B23] 1/2 
V~ = (2) 

29 

for shear waves, where 

B22 = Czz cos 2(r) + C44 sin 2(r) (3a) 

B33 = C33 sin 2(r) + C44 cos 2(r) (3b) 

B23 = (C44 + C23) sin (r) cos (r) (3c) 

and P is the sample density and C u are the sample 
stiffness constants. Similar equations can be written 
for sound propagation in the 13 and 12 planes. 

Measurements of the pulse transit time, for both the 
tensile and shear waves, are taken over a range of 
incidence angles, allowing the tensile and shear-wave 
velocities with refraction angle to be calculated. 
A computer program is then used to determine the 
best fit to the experimental points using the above two 
equations, which results in best estimates for the four 
elastic constants C33 , C22 , C23 and C44. This experi- 
ment is shown schematically in Fig. 2a, where we 
define the 3 axis of the sample as the fibre direction, 
the 1 axis of the sample perpendicular to the 3 axis in 
the plane of the sheet, and the 2 axis as out of plane. 
The sound wave propagates in the 23 plane and the 
sample is rotated around the 1 axis. 

If the sample is rotated about the 2 axis by 90 °, and 
the experiment is repeated, then the same procedure 
will yield the elastic constants Cl l ,  C22, C66 and 
C12 (Fig. 2b). As will be shown in Section 3, these two 
experiments yield all the elastic constants necessary 
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Figure 2 The two ultrasonic experiments needed to obtain a full set 
of elastic constants: (a) C33, C22, C44 , C23 , (b) Cll, C22, C66 , C12. 

for a full description of the properties of the compac- 
ted plates, and hence the fibres. 

3. T h e o r y  
The anisotropic elastic behaviour of an oriented ma- 
terial is described by the generalized Hooke's law as 

~i = &j0-j where i , j  = 1, ... ,6 (4a) 

0-i ~" C i j  8j (4b) 

These two equations relate applied stresses, o-j, and 
applied strains, 8j, to measured strains, 8~, and meas- 
ured stresses, 0-~, through the compliance constants, 
S u, and the stiffness constants, Cq. These relation- 
ships can be expanded into a series of equations of the 
form 

0-1 = Cl1~1 Jr- C1282 @ C13E3 Jr- C1484 

-}- C1585 q- C1686 (5) 

• ,0-3, = . . . , e t c .  

expressed in matrix form as 

0- 2 z .. 

or more conveniently 

-0-1- - C l l  C12 

0-2 C21 C22 

0-3 C3I C3z 

0-4 C41 C42 

or5 C51 C52 

0-6 C61 C62 

C13 C14 C15 C16 - 

C23 C24 C25 C26 

C33 C34 C3s C36 

C43 C44 C45 C46 

Cs3 C54 C55 C56 

C63 C64 C65 C66 

E1 

E2 . 

E3 

E4 

E5 

E6 

(6) 

A similar matrix can be written for the compliance 
constants Sij. 

In the most general case, 36 constants are needed to 
describe completely the elastic properties of a mater- 
ial. Under conditions of symmetry the number of 
independent constants rapidly diminishes. The com- 
pacted materials concerned here all show transverse 
isotropy, sometimes described as fibre symmetry. The 
symmetry axis in this system is the 3 axis, and is 
defined as the main fibre direction, while the other two 
axes, 1 and 2, form an isotropic plane. For  this system 
there are only five independent elastic constants 
shown by the matrix 
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0-4 

O- 5 

(7 6 

Cl l  C12 C13 

C12 Cll  C13 

C13 C13 C33 

0 0 0 

0 0 0 

0 0 0 

below• 

0 0 

0 0 

0 0 

C44 0 

0 C44 

0 0 

0 81 

0 ~2 

0 E 3 

0 ~4 

0 ~5 

2(Cll - C12) ~6 

(7) 

The two ultrasonic experiments described above in 
the experimental section, and shown schematically in 
Fig. 2, are therefore all that is necessary to determine 
all the constants, Cq, of the compacted plates. Once 
the stiffness matrix is determined, a matrix inversion is 
used to determine the compliance constants, Sq. The 
engineering constants can then be determined from 
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the usual relationships: the longitudinal modulus 
E33 = 1/$33; the transverse modulus, El l  = 1/$11; the 
Poisson's ratios, v13 = - $13/$33 and v12 = - $12/ 
$11, and finally the shear modulus, G13 = C44. 

TABLE II The measured stiffness constants of the compacted 
plates/fibres 

Fibre type C33 C~a C13 C12 C44 
(GPa) (GPa) (GPa) (GPa) (GPa) 

4. R e s u l t s  
4.1. U l t r a s o n i c  i m m e r s i o n  m e t h o d  
A typical set of results, of tensile and shear-wave 
velocities against angle of refraction, r, for compacted 
melt-spun polyethylene fibre, is shown in Fig. 3. The 
solid symbols indicate the experimentally measured 
points, while the dotted lines show the computer best 
fit to the curve shapes: in both cases the top curve 
indicates the tensile wave while the bottom curve is the 
shear wave. Fig. 3a shows the velocity angle relation- 
ship for sound propagating in the 23 plane while 
rotating the sample about the 1 axis (as defined in 
Fig. 2a). Fig. 3b shows the velocity angle relationship 
for sound propagating in the 12 plane and rotating the 
sample about the 3 axis (as defined in Fig. 2b). It is 
clear from Fig. 3b that both the tensile and shear-wave 
velocities are independent of the angle of refraction for 
this second sample orientation, confirming the 12 
plane to be isotropic, and therefore the material as 
transversely isotropic. This was true for all five com- 
pacted samples. A full set of results, for the five com- 
pacted fibre types, is shown in Tables II and III. Table 
I! shows stiffnesS constants, C~j, while Table III shows 
the engineering constants. 
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Figure 3 A typical set of results of (a) the tensile velocity, Vt, and 
(b) the shear velocity, V ,  plotted against the angle of refraction, r. 
(0, I )  The experimental measurements: (. . .)  theoretical best fits to 
the data. 

Tenfor 62.3 7.16 5.09 4.15 1.63 
Dyneema 79.1 6.69 5.03 3.94 1.36 
PET 18.8 7.70 5.07 5.45 1.62 
PP 12.8 4.11 2.50 2.58 1.55 
LCP 103.1 7.33 6.12 5.46 1.30 

C33, Cl1, C12 and C44 +_ 2%: C 1 3  ~ 5°~o. 

TABLE I I I  The elastic properties of the compacted plates/fibres 

Fibre type E33 Ell  via v,2 G13 
(GPa) (GPa) (GPa) 

Tenfor 57.7 4.68 0.45 0.55 1.63 
Dyneema 74.3 4.31 0.47 0.57 1.36 
PET 14.9 3.70 0.39 0.65 1.62 
PP 11.0 2.41 0.39 0.58 1.52 
LCP 97.2 3.24 0.48 0.73 1.30 

E33 + 3%, all others +_ 2%. 

Before discussing the results in detail, it is worth 
considering possible sources of error in these measure- 
ments. The work of many authors, most recently that 
of Clarke et al. [3], have shown that although the 
method of fitting Equations 1 and 2 to the velo- 
city/angle data can determine most of the elastic con- 
stants to within 1% error, it can produce errors in the 
shear stiffnesses (e.g. C13) of up to 10%. Certainly 
repeated measurements on a single material in this 
work (e.g. Fig. 4) showed a scatter of over 5% for C13, 
while the other constants were very repeatable. Tables 
II and II! indicate typical errors in the measured 
constants. 

The nature of the compacted material, as an ar- 
rangement of fibres within a melted and reformed 
phase, leads to two other sources of error in extrapola- 
ting the measured elastic properties of the original 
fibres from measurements on the compacted mater- 
ials. Firstly the fibres may not be perfectly aligned 
along the nominal fibre direction, leading to a low 
estimate for the longitudinal fibre stiffness, C33. Sec- 
ondly the compacted material is, in effect, a composite 
with the melted and reformed material reinforced by 
the original fibres. Therefore, all the measured com- 
pacted material properties will be a combination of 
the properties of the two phases. The effect of this can 
be investigated by choosing one fibre, the melt-spun 
polyethylene, and making measurements on a range of 
samples with different fibre volume fractions, achieved 
by compacting the fibre over a range of temperatures 
within the melting range. Fig. 4 shows the results of 
these experiments: Fig. 4a shows all five elastic con- 
stants plotted against the fraction of the melted and 
reformed phase, while Fig. 4b shows more detail of the 
four lower value constants. It is seen that the value of 
C33 changes rapidly with fibre volume fraction, while 
the other four constants are relatively independent of 
volume fraction. Extrapolating back to 0% matrix 
fraction gives estimates of 100% fibre properties: 
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Figure 4 Stiffness constants for compacted melt-spun polyethylene 
fibres for a range of matrix volume fractions. (a) (E) C33, (A) Cll, 
(v) c~,  (v) c~,  (A) c~4. (b) (a) C. ,  (T) C,~, (V) C~, (A) C~. 

TABLE IV A comparison of the stiffness constants of the melt- 
spun polyethylene fibre, determined from a sample compacted at 
138 °C and from extrapolating to 100% fibre 

C 3 3  C l l  C 1 3  C 1 2  C 4 4  

(GPa) (GPa) (GPa) (GPa) (aPa) 

Compacted 62.3 7.16 5.09 4.15 1.63 
at 138°C 
Extrapolated 68.5 7.17 5.16 4.02 1.59 
to 100% fibre 

C33, Cll, C12 and C44 _+ 2%: C13 +__ 5%. 

a comparison between this extrapolation and the re- 
sults for the lowest matrix volume fraction obtainable 
from the compaction process (8%), are shown in 
Table IV. It is seen that taking the values from the 
highest volume fraction of fibre leads to a 10% low 
estimate of C33, but excellent estimates for the other 
four constants. (C33 is likely to be even lower due to 
the effects of misorientation as discussed above.) We 

can therefore conclude that the estimated fibre values 
of C33 and E3 a, obtained from the compacted samples, 
are likely to be between 10% and 20% too low, while 
the other four constants should be an excellent esti- 
mate of the fibre values. For  any detailed modelling 
work, utilizing fibre constants obtained using this 
technique, it is obviously necessary to carry out 
measurements over a range of fibre volume fractions 
and extrapolate to 100% fibre volume fraction. Time 
does not allow such a range of experiments to be 
carried out here, for all the five fibre types involved in 
this study, so that the results shown in Tables II and 
III and the rest of this paper, refer to measurements on 
the highest fibre volume fraction possible using the 
compaction technique. 

5 .  D i s c u s s i o n  

5.1. Genera l  d i scuss ion  
The results for the elastic constants are collated in 
Tables II and III and show a marked similarity in 
terms of the elastic anisotropy. It is well known that 
the longitudinal stiffness C33 (or E33) is generally 
much larger in value than the other elastic constants, 
because this relates to intramolecular bond stretching 
and bond bending rather than intermolecular disper- 
sion forces. Values of C33 in the range of 100 G P a  for 
the polyethylene and liquid crystalline polymer (LCP) 
fibres can be understood in terms of the very high 
degrees of molecular orientation achieved in their pro- 
cessing, together with the comparatively straight mo- 
lecular chains. The lower value of C33 for polyethylene 
terephthalate (PET) and polypropylene (PP) relate to 
different factors, the lower degree of molecular ori- 
entation in the case of PET and the helical structure of 
the molecular chain in PP (together with a comparat- 
ively modest degree of molecular orientation). What is 
more surprising is the close similarity in absolute 
terms for the values of Ca1, C~2, C13 and C14 and the 
corresponding engineering elastic constants E12, v~2, 
v13 and GIa. The only exceptions to this are the three 
stiffness constants Cl1, C~2 and C~3 for the poly- 
propylene fibre which show values around half of 
those measured for the other four fibres. 

It is particularly interesting to note that whereas in 
all cases vt3 is less than 0.5, v12 is invariably greater 
than 0.5. The liquid crystalline fibre, Vectran, shows 
the greatest degree of anisotropy with the highest 
longitudinal modulus, E33, a low transverse modulus, 
EI~, the lowest shear modulus, G~3, and very high 
anisotropy in the Poisson's ratios. As discussed in 
detail elsewhere [15], this pattern of anisotropy is 
consistent with an "ideal" fibre-reinforced material, 
where a matrix with a very low shear modulus is 
reinforced by very stiff fibres. The Poisson's ratio 
v~3 is ,,~ 0.5 which shows that there is only a small 
volume contraction for stress applied along the 3 di- 
rection (the chain-axis direction). On the other hand, 
vl 2 ~ 0.7 (and v23 ~ 0) implies that application of stress 
in the 2 direction causes almost no deformation in the 
3 direction, with all the deformation accommodated by 
pure shear in the 12 plane. To the approximation that 
v12~1, it can readily be shown that G~2 = 1/4 El l .  
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For this Vectran fibre, G12 was measured at 
0.831 GPa, predicting a value for E l ,  of 3.32 GPa  
which compares very well indeed with the measured 
value of 3.24 GPa. 

TABLE VII A comparison of the propertes of the compacted 
fibre (Vectran) and injection-moulded plates (SRP1) for a thermot- 
ropic liquid crystalline polymer 

Process E33 E11 v13 v12 G13 
(GPa) (GPa) (GPa) 

Compacted 97.2 3.24 0.48 0.73 1.30 
(Vectran) 
E33 _+ 3%, 
all others -- 2% 
Injection- 15.6 2.92 0.50 0.71 1.43 
moulded 
SRP1 

5.2. Comparison with other oriented 
polymers 

The ultrasonic results for compacted fibres are com- 
pared with those for die-drawn rods of Rigidex 50 
polyethylene (draw ratio 20) [16] and P P H  6065 poly- 
propylene (draw ratio 10.5) [17] in Tables V and VI, 
respectively. The polyethylene data, measured at 
10 MHz by Leung et al., are in close agreement and 
confirm that the compaction procedure is very effec- 
tive indeed in producing bulk specimens with the 
elastic properties of highly oriented fibres. It would be 
expected that the value of E33 for the fibre should be 
much larger than the die-drawn sheet as the fibres 
have a much higher draw ratio. This confirms the 
problem of underestimating the value of E33 using the 
compaction method as described above in Section 4. 
Although the results for polypropylene, measured at 
10 MHz by Chan et al. [17] are not in quite such close 
agreement with regard to C12 and C13, all the other 
elastic constants are close in value and it can again be 
concluded that the compaction technique has been 
applied satisfactorily. Both of these comparisons con- 
firm that the elastic anisotropy of the drawn fibres and 
the bulk drawn thick section sheets is virtually identi- 
cal. 

A further comparison of this nature is shown in 
Table VII for the Vectran LCP fibre and an injection- 
moulded plate of a different thermotropic liquid cry- 
stalline polymer [18]. Although the compacted fibres 

TABLE V A comparison of the stiffness constants of the melt- 
spun fibre,(Tenfor) and die-drawn polyethylene sheet 

Process C33 Cll C13 C12 C44 
(GPa) (GPa)  (GPa)  (GPa)  (GPa) 

Compacted. 62.3 7.16 5.09 4.15 1.63 
(Tenfor) 
C33, Cll, C12 
and C44 _+ 2%: 
C13'_+ 5% 
Die-drawn 66.0 6.90 4.40 3.90 1.60 
DR = 20 

TABLE VIA comparison of the stiffness constants of the poly- 
propylene (PP) fibre and die-drawn sheet 

Process C33 C11 C13 Cl 2 C44 
(GPa) (GPa)  (GPa)  (GPa)  (GPa) 

Compacted 16.2 4.86 2.85 2.65 1.67 
(PP) 
C33, Cll, C12 
and C44 ! 2%: 
C13 _+ 5% 
Die-drawn 15.0 4.16 1.7 1.15 1.98 
PP 
(DR = 10.5) 

and the injection-moulded plaques are not identical in 
chemical structure (Vectran is 70:30 p-hydroxyben- 
zoic acid/p-hydroxynaphthoic acid, whereas SRP1 is 
36: 32: 32 p-hydroxybenzoic acid/isophthalic acid/hy- 
droquinone) the elastic anisotropy is very similar in- 
deed. In the compacted fibres, E33 is much greater 
than for the moulded plaque, owing to the higher 
molecular orientation, but the other elastic constants 
appear to be little affected either by molecular orienta- 
tion, as previously concluded, or more interestingly by 
detailed chemical structure. 

5.3. Comparison with fibre-reinforced 
composites 

Table VIII shows a comparison between the stiffness 
constants of compacted melt-spun polyethylene fibre 
and a melt-spun polyethylene fibre epoxy/composi te  
with 55% fibre content. It can be seen that there is 
again remarkable agreement in the elastic anisotropy 
of the two materials. This result is of importance in 
two respects. First, it is clear that the compacted fibres 
offer a route to obtaining comparable elastic properties 
to those of conventional fibre/resin composites, but 
with great advantages for recycling and other environ- 
mental issues. Secondly, this result confirms our view of 
the structures of the polyethylene fibres, where we have 
proposed that they are akin to a short fibre composite 
with long crystals acting as reinforcing fibres. 

Further support for this viewpoint comes from two 
other sources. First, there are the results for the ther- 
motropic liquid crystalline polymers, where we have 
seen that the actual chemical structure of the chain 
molecules is of secondary importance in determining 
the elastic anisotropy. Secondly, as discussed above, 
the actual pattern of anisotropy in the oriented liquid 
crystalline polymer is consistent with an "ideal" fibre- 
reinforced composite material. In particular, we have 
already observed a remarkable anisotropy in the Pois- 
son's' ratios. Much more detail of the comparison 
between the properties of compacted polyethylene 
fibre composites, die-drawn polyethylene fibre/epoxy 
composites can be found elsewhere [4]. 

5.4. Theoretical estimates of fibre elastic 
constants 

A comparison was made of the experimental results 
obtained from the compacted materials with theoretical 

376 



T A B L E V I I I A comparison of the stiffness constants of the com- 
pacted melt-spun polyethylene fibre and a melt-spun polyethylene 
fibre/epoxy composite (55% fibre volume fraction) 

Process C33 C1~ C13 C12 C13 
(GPa) (GPa)  (GPa)  (GPa)  (GPa) 

Compacted 62.3 7.16 5.09 4.15 1.63 
PE 
PE/epoxy 54.8 7.62 5.89 4.39 1.71 
composite 

c33, cll,  c12 and C44 + 2%: C13 _+ 5%. 

calculations of the fibre elastic constants. This was 
carried out for polyethylene and polypropylene. 

5.4. I. Polyethylene 
The crystal structure of polyethylene is of orthorhom- 
bic symmetry so that the elastic behaviour is specified 
by nine independent elastic constants. The stiffness 
matrix is given by 

Cll  C12 C13 0 0 0 

C12 C22 C23 0 0 0 

C13 C23 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 Css 0 

0 0 0 0 0 C66 

(9) 

where the principal axes of the elastic anisotropy are 
chosen for simplicity to coincide with the a, b and 
c axes of the orthorhombic unit cell. 

The compacted samples which have been examined 
in this research are all of fibre symmetry. To make 
a comparison between experiment and theory it is 
therefore necessary to estimate the theoretical predic- 
tions for a polyethylene sample of hexagonal sym- 
metry. This can be done as the basis of the aggregate 
model [19], assuming that the sample consists of 
a transversely isotropic aggregate of orthorhombic 
units averaging the unit cell elastic constants in the 
plane normal to the c axis (chain axis) direction. The 
averaging can be done either in terms of stiffness 
constants (Voigt average) or compliance constants 
(Reuss average). These two averaging schemes repres- 
ent upper and lower bounds to the elastic constants. 
For  the stiffness constants the aggregate model gives 
the elastic constants of the equivalent fibre C'~1, C'~2, 

i CI13, C33 and C' 44 as 

3 3 1 1 
C~11 = C22 = g C l l  -[-~C22 -}- 4 C12 JI-2 c66 

(lOa) 

1 1 3 1 
C~12 ~-- ~ C l l  q -~C22-} -~C12-~C66  (lOb) 

1 
C~13 = ~ (C13 -- C23 ) (10c) 

C;3 = C33 (10d) 

and 

1 
C44 = ~ (C44 + C55 ) (10e) 

where C u are the constants of the polyethylene crystal 
cell. Similar equations for S',1, S'~2, etc., with only two 
changes: in the equation for S'11 the last term is (1/8) 
$66 while for S'~2 the last term is - (1/8) $66. 

The elastic constants for the polyethylene crystal 
unit cell structure have been calculated by many re- 
searchers, including Odajima and Maeda [20], 
Tashiro et al. [21], Karasawa et aI. [22], Sorensen et 
al. E23], and more recently Lacks and Rutledge [24]. 
In essence the theoretical estimates are arrived at by 
a knowledge of the unit-cell dimensions and the inter- 
molecular force constants. Sophisticated computer- 
modelling packages are now available which allow 
this form of simulation to be relatively easily per- 
formed. The difference in the theoretical estimates, 
from the various authors, lies partly in the temper- 
ature of the prediction (often at 0 K), and partly in the 
values of the off-diagonal stiffnesses C12, Ca3 and C23. 
These particular stiffness constants are very sensitive 
to such factors as the unit cell dimensions which affect 
the intermolecular force fields, which are themselves 
very sensitive to the detailed assumptions made in the 
calculations. 

We have attempted to examine the various stiffness 
calculations for polyethylene in comparison with our 
experimental data. Some of the predicted stiffness ma- 
trices, notably those by Karasawa et al. and Sorensen 
et al., were found not to satisfy required strain-energy 
criteria and it was therefore not possible to calculate 
the compliance constants for our comparison between 
theory and experiment. The best correlation between 
theory and experiment came from the work of Lacks 
and Rutledge [24]. These authors have used the force 
field of Karasawa et al. but included the effect of 
thermal motions, enabling the calculation of the prop- 
erties of the crystal over a range of temperatures from 
~ 4 0 0  K. For  our comparison the most appropriate 
values are those at 300 K. 

In Table IX we show the stiffness constants, Cu, for 
crystalline polyethylene calculated by Lacks and Rut- 
ledge with those calculated for fibre of equivalent 
structure on the Voigt and Reuss averaging schemes, 
together with our ultrasonic results for compacted 
fibres (the Voigt and Reuss bounds were very close for 
most of the stiffness constants and so we show the 
mean of the upper and lower bounds in Table IX). It 
can be seen that the measured pattern of anisotropy 
corresponds very well with that predicted theoret- 
ically, including good prediction of the off diagonal 
constants. The value of C33 is much greater than any 
of the other values because deformation in the fibre 
axis direction involves stretching and bending of ex- 
tended chain molecules. The lower value of the experi- 
mentally measured C33 compared with the theoretical 
prediction can be attributed partly to lack of perfect 
overall orientation, and partly due to the limited crys- 
tal length in the fibres. It has been proposed in several 
alternative models for the structure of these fibres 
that the extended chains in long crystalline sequences 
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T A B L E  IX A comparison of measured fibre properties and theoretical predictions for polyethylene 

Crystal unit stiffness constants 
(300K) (GPa) Lacks and Rut- 
ledge [24] 

Calculated equivalent fibre (aver- 
age of Reuss and Voigt) (GPa) 

Compacted fibre properties (GPa) 

8.8 4.3 4.5 0 0 0 

4.3 8.8 5.8 0 0 0 

4.5 5.5 290 0 0 0 

0 0 0 3.4 0 0 

0 0 0 0 2.4 0 

0 0 0 0 0 3.0 

-9.15 3.95 5.15 0 0 0 

3.95 9.15 5.15 0 0 0 

5.15 5.15 290 0 0 0 
9 

0 0 0 2.86 0 0 

0 0 0 0 2.86 0 

0 0 0 0 0 2.6 

7.16 4.15 5.09 0 0 0 

4.15 7.16 5.09 0 0 0 

5.09 5.09 62.3 0 0 0 

0 0 0 1.63 0 0 

0 0 0 0 1.63 0 

0 0 0 0 0 1.57 

T A B L E  X A comparison of measured fibre properties and theoretical predictions for polypropylene 

Crystal unit stiffness constants 
(300 K) (GPa) Tashiro et al. [21] 

Calculated equivalent fibre (aver- 
age of Reuss and Voigt) (GPa) 

Compacted fibre properties (GPa) 

7.78 3.91 3.72 0 0.90 0 

3.91 11.55 3.99 0 -- 0.36 0 

3.72 3.99 42.44 0 0.57 0 

0 0 0 4.02 0 0.12 

0.90 - 0.36 --0.57 0 3.10 0 

0 0 0 0.12 0 2.99 

9.53 3.73 3.83 0 0 0 

3.73 9.53 3.83 0 0 0 

3.83 3.83 42.4 0 0 0 

0 0 0 3.53 0 0 

0 0 0 0 3.53 0 

0 0 0 0 0 2.90 

4.11 2.58 2.50 0 0 0 

2.58 4.11 2.50 0 0 0 

2.50 2.50 12.8 0 0 0 

0 0 0 1.55 0 0 

0 0 0 0 1.55 0 

0 0 0 0 0 0.80 

reinforce the structure in a similar manner to the fibres 
in a short-fibre composite, so that there is a shear-lag 
effect which reduces the modulus due to the finite 
aspect ratio of the reinforcing crystalline elements 
[25]. 
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5.4.2. Polypropylene 
The crystal structure of polypropylene is monoclinic, 
so that a number of the other elements in the stif- 
fness matrix of the crystal unit become non-zero (see 
Table X). However the equations for predicting the 



equivalent fibre elastic constants, using the aggregate 
model, reduce to the same as shown above for poly- 
ethylene (Equations 10a-e). The elastic constants for 
the polypropylene monoclinic unit cell are not cur- 
rently available from Lacks and Rutledge so we have 
used the alternative estimates of Tashiro et al. [211, 
determined at 0 K. Comparison between the ultra- 
sonic data for compacted fibres and theoretical calcu- 
lation, again using the aggregate model to give the 
equivalent fibre, are shown in Table X. As for poly- 
ethylene, it appears that the pattern of mechanical 
anisotropy is similar to that measured, but in this case 
the actual measured values are all systematically lower 
than those predicted by Tashiro et al. For C33 this can 
be attributed to the lower degree of molecular orienta- 
tion in the fibres compared to the perfect crystal, but 
in the case of the other elastic constants, it is likely that 
this is partly due to the calculation being for low 
temperatures, and partly due to the fact that there is 
a substantial contribution from amorphous material 
which has a much lower stiffness. 

6. Conclusion 
The compaction technique offers an excellent route to 
obtaining all the elastic constants for a range of ther- 
moplastic fibres, by providing a thick section material 
with comparable elastic properties to the original 
fibres on which ultrasonic measurements can be car- 
ried out. It is concluded that the value of C33, deter- 
mined from the compacted materials, is an underesti- 
mate of the fibre properties, owing to imperfect fibre 
orientation and the effect of the melted and recrystal- 
lized phase. The other four stiffness constants, Cl l ,  
C12, C13 and C~4, are less affected by these factors and 
can be estimated with a high degree of confidence. 
Even more interestingly, these latter four constants are 
broadly similar for the five different fibre types, indic- 
ating that they are comparatively insensitive to chem- 
ical structure and molecular orientation. This was 
confirmed by a comparison between a compacted 
LCP fibre, and an injection-moulded LCP of different 
chemical structure and orientation: the four constants 
were again very similar. The LCP fibre results were 
also of interest in showing the greatest level of elastic 
anisotropy, with, in particular, the Poisson's ratios 
v13 and v12 approaching the theoretical limits of 0.5 
and 1.0, respectively, for an "ideal" fibre-reinforced 
material. 

The elastic anisotropy of the fibres was compared 
with other oriented polymer materials, notably die 
drawn rods and polymer/epoxy composites. In all 
cases the elastic anisotropy was very similar for these 
different classes of materials, emphasizing that the 

compact on process offers an alternative route to 
useful oriented products. 

Finally, the measured elastic constants were used as 
an end point for comparing with theoretical simula- 
tions of the fibre properties, based on the properties of 
the polymer crystal cell. Excellent agreement was ob- 
tained between the theoretical and experimental stiff- 
ness constants for polyethylene and reasonable agree- 
ment was seen for polypropylene. 
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